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1. Introduction

The string effective action has an intricate and beautiful structure. The higher derivative
interactions in the effective action play an important role in understanding the ultraviolet
structure of the theory beyond both the supergravity approximation and the perturba-
tive string approximation. These interactions also play a role in resolving singularities of
classical supergravity solutions and in improving our understanding of non-perturbative
dualities.

A direct study of the space-time action is, in many ways, complimentary to S-matrix
computations in perturbative string theory. The former gives non-perturbative results in
the string coupling but usually to a fixed order in the momentum expansion. The latter
gives results to all orders in the momentum expansion but to a fixed order in the string
coupling expansion. Combining the data from both approaches will help determine the
structure of the complete non-perturbative S-matrix.

In this work, we will be concerned with the 1PI effective action which is duality invari-
ant. Our main result will be to explain how to derive recursion relations relating special



higher momentum interactions. The method applies quite generally though we will focus
on the case of type IIB string theory in ten dimensions.

We will show that each special interaction satisfies a Poisson equation on the moduli
space with sources at most cubic in the couplings of lower momentum operators. For other
choices of couplings, this structure will generalize to a system of equations with sources.
We will focus on the simplest examples in this work which satisfy second order equations.
As a consequence of this constraint, these interactions do not receive string loop contribu-
tions beyond a certain loop order extending the result of [[. They do, however, receive
non-perturbative corrections which might be interpretable as coming from D-instantons in
some cases, or bound-states of D-instantons and D-anti-instantons. This leads to a quite
beautiful interplay between modular forms and space-time couplings. It would be exciting
to relate the non-perturbative effects to twisted partition functions of brane systems along
the lines of .

There has been considerable work devoted to understanding higher derivative interac-
tions in theories with maximal supersymmetry in different dimensions. Most of the analysis
involves the first few terms in the o expansion of the effective action; for a selection of
papers, see [-[[§. Of particular interest to us are interactions in ten-dimensional type
IIB string theory of the form

007 7 D*R (1.1)

where flgo,o) (1,7) is a string coupling-dependent coefficient function. For low values of &, a
great deal is known or conjectured about these f]go,o) M. 8, B, i1, [5],

féo’o) (r,7) = E3/2(Tv 7), 2(070) (1,7) = E5/2(7', T), (1.2)
while f:,EO’O) satisfies
0? _ - \2
473 prr f?EO’O) (1,7) = 12f§0’0) (1,7) — 6<f(§0’0) (T, 7')) . (1.3)

Here E4(7,7) is the non-holomorphic Eisenstein series given in appendix [B.

1.1 A sketch of the argument

Before we delve into a complete analysis, it worth sketching schematically the basic idea
about why there should be recursion relations relating an infinite set of higher momen-
tum operators. Let us first recall that type IIB supergravity enjoys a U(1) symmetry
which is broken in string theory by non-perturbative interactions like those mediated by
D-instantons. For a review, see [[J). Let us recall the U(1) charge assignment to the various
fields and parameters of type IIB supergravity given by [20, R,

(5] =0, [gu]=0, Wl=35, [01]1=2 I[d=y3, (1.4)
where € is the supersymmetry transformation parameter, A is the dilatino, ¢ the grav-

itino, g,, the metric, 7 the string coupling, Fj the self-dual 5-form field strength and G
the complex 3-form field strength. A field carrying U(1) charge ¢ has modular weight



(—q/2,q/2) under SL(2,Z) transformations. Some relevant properties of modular forms
are summarized in appendix [B.
Now at the eight derivative level, there is a nice superfield formalism that relates
couplings like
OO R 4 - fO2T1D (1 7)AIS, (1.5)

Supersymmetry naturally constrains the coupling containing the most fermions which de-
termines f(12~12) as shown in [§] extending the arguments of 23-P4]. The f(1%~12) coef-
ficient function for A6 is proportional to

Dui -+ DoV (r,7) (1.6)

where féo’o)(Tﬁ) appears in (L) and D,, are modular covariant derivatives defined in
appendix B.

This line of reasoning leads to constraints so long as you have moduli-dependent
fermionic couplings which do not vanish when you apply supersymmetry to the moduli-
dependent coefficients. However, at some point in the momentum expansion, we will simply
run out of fermions to use to build interactions so we expect this kind of argument to extend
to a finite (but high) order in the momentum expansion.

Now this is a little too simplistic. A complete analysis of the supersymmetry constraints
for maximally supersymmetric 0+ 1-dimensional Yang-Mills was performed in 29]. In that
analysis, relations were found to all orders in the momentum expansion but they related a
special coupling at order 2k in the derivative expansion to couplings (both protected and
unprotected) at order 2(k — 1). What we will show in this work is that there is a much
richer and more powerful set of recursion relations when one considers field theory rather
than quantum mechanics.

We are going to consider operators of the form G2k \16 i type IIB string theory. The
case GAA6 was already studied in [[1]] where the coefficient function was argued to be

proportional to
Dz Do fs""(r,7) (1.7)

where f2(0,0) (,7) is given in ([L.2).
We expect these couplings to be related to D?*R* by supersymmetry giving a schematic
structure
féO,O) (r, %)D%R‘l N f(12+k,—12—k)(7_7 7—_)@2k \16 (1.8)

analogous to ([l.J). Unfortunately, the relation between these interactions cannot be ob-
tained from any (simple) superspace argument and it remains an outstanding question to
obtain a precise relation.

To see what is special about these particular interactions, note that the supercovariant
combination, CAJW,,, contains a chiral gravitino coupling &ﬁﬂ,ﬂﬁp}. We can expand powers
of G as follows:

G2k — (1/}1/})2NG2(k_N) e (1.9)

Here 2N denotes the largest non-vanishing power of (¢7)) which we will determine later.
The exact value of N is unimportant. The omitted terms involve less fermions. Expanding



the chiral space-time couplings of interest gives
f(12+k,—12—k) (7_’ 7—_))\16 é2k _ f(12+k,—12—k) (T, 7:)/\16(ZDZD)2NG2(k_N) 4o (110)

Again the omitted terms have fewer fermions. Now the key point is what happens under
a variation of 7 which gives,

5 <f(12+k,—12—k)(7_’7—_))\16(1)“[))2NG2(19—N)> = Pf2+h—12-R) (1 7)e* \*
AN G (1)

To obtain a constraint, this term cannot mix with any higher fermion term of the same
order in the momentum expansion. Such a term would have the schematic structure

AN (4pp) 2N G215 (1.12)

The fermion F must vary into G. After quickly perusing appendix [A], we see that the only
fermions with this property are (A, 1) but the resulting coupling then vanishes by Fermi
statistics. Therefore the coupling ([L.1() should be special and constrained.

Now in this argument we have ignored several issues: the first is mixing with other
couplings with the same number of fermions; the second is mixing with terms in the
supergravity action via higher derivative corrections to the supersymmetry transformations;
the final issue is mixing with source terms from lower derivative interactions (but still
beyond supergravity) again via corrections to the supersymmetry transformations. We
will address all of these issues in the bulk of this work but the above argument gives the
core reason to expect constraints. It is very general. We expect similar reasoning to apply
to protected couplings in theories with N=4, N=2 and perhaps even N=1 supersymmetry.

1.2 A brief summary

Let us summarize the results. In addition to the GZ*\16 interaction with coefficient function

24k —12=F) (- 7) we also need to consider @2kA15’y“¢Z and G2(k_1)(éwpépr))‘16 which

11+k’,—11—k')(

have the same coefficient function f( 7,7). These modular forms satisfy two

coupled equations which are derived in section fl. The first equation is a Poisson equation
on the fundamental domain of SL(2,Z) for f(2+k=12=k)(7 7)

12+k,~12—k 12+k,~12—k
a2t ) = qp fO12F )

+D114k Z <bkk/f(11+k/7_11_k’)f(k—k’,k’—k)
k/

DiiyxD_(121k)

_|_Ckk,f(12+k’,—12—k’)f(k—k’—l,k’—k—i-l)>’ (1.13)

with eigenvalue aj and source terms with coefficients (bgxs, cxrr). The source terms arise
from interactions in the effective action beyond supergravity but at an order ¥’ < k in
the effective action. The source terms themselves are special and only involve interactions
related to D?*'R* by supersymmetry.



The second equation has a similar form,
D_(12+k)D11+kf(11+k,—11—k) _ akf(11+k’_11_k)

n Z <dkk/f(1l+k’,—1l—k’)f(k—k’,k’—k)
k/
+ekk,f(12+k’,—12—k’)f(k—k’—l,k’—k—i-l)>7 (1.14)

with sources appearing with coefficients (dy/, exrr). In principle, all the numerical coeffi-
cients (ak, bgr’, Cxrs, diiss €xrr) are determined by supersymmetry. In practice, it is simpler
to fix their values for specific choices of k by using additional data from perturbative string
and supergravity computations. It is possible that some underlying topological string
theory might be useful for determining the coefficients. Though the equations have an in-
tricate recursive structure, they involve a very specific pattern of interactions that is highly
constrained. Also note that there can be different equations for each possible space-time
structure appearing in G2¥. However, they all have the form of (L13) and ([.I4), just with
different coefficients.

The existence of the recursion relations ([.13) and ([.14) leads to a variety of results
for these protected couplings which are explored in section [J. The protected couplings

receive only a finite number of perturbative string loop contributions regardless of how
large k might be. We expect a version of this result to also hold for D?*R* and many other
special couplings using supersymmetry to relate the couplings with the schematic structure
depicted in ([.§). There should be a sort of supermultiplet of couplings built from G2k \16
which enjoys special renormalization properties.

Using supersymmetry to chain from the maximal fermion interactions to couplings
with fewer or no fermions like D**R* can lead to much more complex equations for the
coefficient functions of the less fermionic interactions. This comes about because the less
fermionic couplings mix with many couplings of different space-time structure each with
its own set of modular forms. Some of the interactions for a fixed space-time structure can
therefore involve modular forms z(7, 7) which split into

21, 7) =Y z(T,7), (1.15)

i
where each z;(7,7) satisfies a Poisson equation sourced by interactions in the effective

action. In turn, each of these sources can involve more than one modular form leading to
a highly intricate, nested structure discussed more in section JJ.

2. Deriving the recursion relations
We consider the space-time interactions in the low energy effective action given by
dete f12HH 1270 (7. 7)G2F \16, (2.1)

which we expect are related to D?*R* as part of a supermultiplet of couplings obtained
using supersymmetry along the lines described in section [[.. Here fA2HR—12-8) g g



modular form of weight (12 + k,—12 — k) defined in (B.2). In principle, knowing the
coupling (R.1]) should be enough to determine all the couplings of the supermultiplet using
SL(2,Z) invariance and supersymmetry.

Since A6 forms a spacetime scalar, G?* forms a scalar as well, and we need to know the
index contractions. Among the various possible interactions, we shall focus on a particular
contraction only, though we will discuss how the results generalize to the other cases.
Couplings of the form G*9~4R4 have been discussed in the literature B6-Rg. Our results
differ from the earlier conjectures of [Rg].

The structure G¥—4R* gives couplings R?, G4R4, G’SR4, ... but not ones of the form
G’6R4, G10R4, .... However, it is easy to work out the specific space-time structure we want
to study based on the details of the spacetime structure of the GY—4RA couplings, which we
briefly sketch. These couplings were first determined in six dimensions and then a Lorentz
covariant expression for these interactions was obtained in eight dimensions of the form

g—1
/ d8 rg;glf’l DhP s 52 5“4}]1{“1”1,)1...1{#4”4,)4) R (2.2)

Here H,,, is the RR 3-form field strength obtained from ten dimensions. There is an ad-
ditional eight-dimensional field strength in the RR sector coming from F5 which we drop.
Among other terms, this gives

-1
/ d%;((HW,,HWP)Q(HMHMF)g R ~ / dPrHY R (2.3)

Because the interactions GOR?, GIORA, ... are also non-vanishing, we conclude that the
combination H,,,,H""? must arise. SL(2,7Z) invariance and supercovariantizing then leads
to the combination GWPG’“’ P. We shall therefore focus on the structure (GWPG‘“’ DL

G? and drop all other space-time structures. So
G = (G, GMP)* (2.4)

for our purposes.
Now consider the following interactions

G«2k)\167 G2k+1)\14, G2(k—1) (GMVPGZVp))‘lﬁv (25)

which are in the action S*+3) at O(o/**3) where we normalize the supergravity contribution
to be O(1) in . Here

GA«2k+1)\l4 ~ G2kéuup(’Yuupfyo)ab()\lll)ab' (26)

These three interactions are special in the sense that they mix with each other under
supersymmetry but with no other interactions in the effective action at the same order in o’.

2.1 Sufficiently small &

First we consider the case when k < N is sufficiently small so that

G = (=61)%* (I g1t o )F - = (—6ipp)* - (2.7)



2.1.1 Contributions from L**3) and L©

(k+3) and the supergravity action L(9).

Let us first consider the contributions only from L
We shall consider the source contributions from the terms in the effective action which are
intermediate in orders of o/ later.

Take the interactions from (R.5),

L = detef(12H0=12R) (2 2)(—6iyn) 2K AT,
)(—Ginprp) F A B ytap

)(=6igy)? D (Grrdr, NS, (2.8)

il

)

L§k+3) _ detef(ll-i-k,—ll—k) (r

il

)

L§k+3) _ detef(lHk’_H‘k) (r

|l

)

and consider their variations under the linearized supersymmetry transformation, 50,
given in appendix [A], into

dete(—6@'1/)1[))%)\16@*7“1/);).
We find that

5(0)L§k+3) _ (5(0)dete)\lG)f(12+k,—12—k) (r, ?)(—62'1/11/1)%
+detef(12+k,—12—k) (7_, 7—_))\16 (5(0) é2k) 4.
= —8idetefU2HH 127 (1 7) (—6iph) A0 (€5
+dete fUPHRI2TR) (2 F)NIO(6OV G - (2.9)

The last term receives two kinds of contributions: one is of the form (¢t)2*=1 () -
(16 4)) given by the supervariation 5(0)7/’;1' This involves the piece of D,e of the form [R(]

D,e= _%(&u%ﬂﬁo + 7[’1/'7&## + 7[’#'71/7110)7'/06 ty (2.10)

and the 1/*1be term in F5. The other contribution is of the form (11))2*=1 (i) - (1*6O \)

using

SON ~ eG ~ ey,

and gives a contribution of the required type after using a Fierz identity. The precise
numerical values are not relevant for our purposes, and we finally find that

SO LI~ dete fI2+5:~127K) (7, 7) (—6igpyp) 2R A0 (£ 4Hgp%) + - . (2.11)
We also find that

5(0)Lgk+3) _ dete5(0) (f(ll—i—k,—ll—k) (7_’ 7—_))\157;11!)2)(_62-1#1#)216
+dete f R TIR) (2 2 Mk 5O (—6igpnp) ) + -
= 2idete(—6i¢¢)2k)\16(E*7“¢Z)D11f(ll+k’_ll_k)(T,7_')
+dete f R TIR) (2 2 Ny 5O (—6igp) ) - (2.12)

The second term receives a contribution from 60 ~ 1) )\e, leading to

5O LI = 2idete(—6ip) A (€ ) Dy fOFR IR (2 Ry o (2.13)



We have kept track of the factors to show the emergence of the modular covariant derivative
with the correct modular weight. We finally also see that

SOLE o4 (2.14)
Thus
50 (L§k+3) + L§k+3) + L:(akJrg)) ~ Z'<Dl~c+11f(lHk’_ll_k)(Ta 7)
yf 2k —12-R) (o f))dete(—6i¢¢)2k)\16(E*7“¢Z) +---. (2.15)
Next we consider the variations under linearized supersymmetry into
(dete)(—6ithep)2F N6 (ex*).
We find that

5(0)L§k+3) _ dete5(0) (f(12+k’_12_k)(7', 7—_))\16)(_&-1/)1!))%
tdete fA2HR 1220 (2 F)NI050) (—6igp) k) - -
— —2idete(—6iyp)F NS (EN) Do f12HE12R) (7 7)
+dete f 12T TI2R) (2 2)NI66O) (—Gi) ) + -+
= —2idete(—6iy)) N (EN)D_ 1oy fUIETF TR (1 ) 4o (2.16)

where for the last term we have used 609 ~ ¥ \*e*. Again we get the modular covariant
derivative with the correct modular weight. Also, we see that

5(0)Lg€+3) — detef(ll—i—k,—ll—k)( 71)(_621/}1/})2k)\155(0) (,.Y,u,w:l) I

T,
~ idetef MR =I=R) (2 =) (i) 2PN (eX*) + - - - | (2.17)
where we have used [f]
ABP5O) (yapry = 1516 (€X"). (2.18)
Finally,
SOLE  idete fO1HF~11R) (1 2)(—6igh) X NS (EA*) + - - - . (2.19)

In the calculation of (R.19), the relevant supervariations that give us the required spacetime
structure involve
0 ~ e, §ON~ P~ erp), 80y ~ Ge,
§OG ~ 5O ~ pGe* ~ yie*,
and
SOG ~ (5OP)IN +Y(6ON) ~ GEXN* 4 he* GF ~ e ¥,

To show that they give the spacetime structure in (R.19), one has to use the Fierz identity
extensively. To summarize:

50 (Lgk+3) I Lék-}—?») I L§k+3)) - i<D_(k+12)f(12+k,—12—k)(T7f)

AR TR (7 g fULR TR (2 ) dete(—Gipg) AT (EA) 4+ - . (2.20)



Let us now consider the contributions from supergravity. First consider contributions
from 63 L) which give us (—6it1h)2* A16(€X*). Let us start with the A*2A2 term in the
supergravity action given by (ignoring an overall coefficient of 1/256) [f]

Lgo) = dete(A* " X) (AYupA*) ! (2.21)

Note that this term is not obtained from the FZ term in the action because of the spinor
identity ([A.7), and has to be constructed separately. Consider the set of supervariations
given by

SN, = A6 [ (7, 7Y AM)ea (022 e (€ ) + 27, FYA (1€ )y

+ (N )0a (9807, 7) (1 )anei91 (1. ) (7 ap (€ ) (2:22)
(
(

+g7(T,7) 7“1..#470)@(7#1 “pig €)q+gs(7,7) (7“1..#570)(117(7#1 s 6*)d)] ’

which are all the possible supervariations that survive for k = 0. We set g5 = 0 by redefining

6
g1 — g1+ %, (2.23)
and using the identity
(’Yuup’yo)dc’}/(%/p - (’Yuup’yo)ac’}’gé/p + (’Yuup’yo)ad’}'gbup =0. (2'24)

The identity (.24) can be proved by noticing that the expression is antisymmetric in (c, d)

and thinking of (a,b) as irrelevant indices. Thus constraints of chirality and antisymme-

try force it to be proportional to (V,.,7")ae. Note that (7,7°)ac and (up..us7")ac are

symmetric in (c,d). This immediately leads to (R.24) after multiplying by (7°7Vo, 0905 )ed->
Now (R.22) gives us the relation

0TI LD = i 6 g 7, 7)ot S (X7), (2.25)
where

(7, 7) = —480¢1 (7, 7) — 2g2(7, 7) + 593(7, 7) — 2094 (T, T)
3095 (7, 7) — 1680g7 (7, 7). (2.26)

Note that (7, 7) is independent of gg(7,7).

We now impose the constraint of closure of the supersymmetry algebra to vastly reduce
the number of coefficients in (2.22). Since we do not have an off-shell superspace formalism,
the supersymmetry algebra closes only with the use of the equations of motion for the
fermionic fields, modulo various local symmetry transformations of the theory.

We begin by considering

5= 5(0) + O/k+35(k+3), (227)

Note that (AP X)(AyupA®) = 6(A*v*X)(My,A*) by Fierzing, so this expression is the unique one.
2This proof is along the lines of appendix 4.A in |



and restrict only to the part of [d1,J2]A* that depends on €; and €5. The commutator of
two supersymmetry transformations gives,

[61, 5]\ = ([5&0) 5] 4 M350 5]y okt 5l S) 59]) N (2.28)

The supergravity contribution is given by [B(]

[5§°>,5§°)1Aa=£“Dma+Z< gt gg

9% (62%}11}2”361),}/;!1)1/21’3)(,}/#1)#)\*)17 + (2'29)

where
g =ieay"er. (2.30)

We see that closure follows after using the free equation of motion. The specific space-time
structure in (R.29) is crucial in determining the higher derivative corrections.

5(0) ’ 5§k+3)]>\*

Let us next consider [§; . Keeping only the relevant terms, we find

0 5 N: = 192(—6inpep)2E (A1), <— g(@we)vmtge

—6ik(~6i)" D g AV 1) ae (€ )aCior oo (81 67177 N)
1 y =k v *
+Z (_6“/}1/})2kgl (61)‘) ()\14)0[1(7/1 pfyo)dc(’mupQ)aa (2'31)

<emmge1wgg"WB)v&(Dwgl)

where we have used the Fierz identity. The second term in (R.31]) gives a contribution
different from the others which we discuss later.

In calculating the first term, we see that the contributions from the other g; functions do
not give the space-time structure appearing in (R.29), and so they vanish. The contributions
from g9, g3, g5, g7, and gg involve a term with 5 gamma matrices of the form

Ao (E s i 1) (77799 (2.32)

while (R.29) has no more than 3 gamma matrices, and so they vanish. The contribution
from g4 gives the spacetime structure

1
(6271/11/21/361)75[1'/21/3 (233)

9
8(62%61)’Yab + 57 21

and so g4 = 0. Simply the space-time structure of (R.29) therefore allows only one non-
vanishing coefficient in (2.22). The last term in (R-3])) is a supersymmetry transformation

of the type (.29) with ‘
€= —%(j\ef)eg. (2.34)

The second term in (P-31)) gets a non-trivial contribution from 5@1[)* ~ e1G* and is
proportional to

ool W

1
96 (62/71111121/361)75;”21/3) /71(7)0 (235)

(66D (RGN (), ( L

We see that
(67", 6510 = 0 (2.36)

— 10 —



for this type of contribution. Thus closure of the supersymmetry algebra for A* gives the
dilatino equation of motion

YOy D, A* +Oé,k+3(Dk+1lgl)( 6i¢¢)2k)‘15

We began by considering only those supervariations which survive for £ = 0. We can
also have other supervariations which contribute only for £ > 2. For example, we can have
something like

SIHING ~ ()2 (PP (D v A ea (] 27 (V2 € s (2:38)

among many other possibilities. However, arguing along the same lines as above, we find
that there are actually (and remarkably) no other terms.

Next we consider the contribution from the A*i)1) part of the action, which comes
from expanding the G-G* coupling. There are two contributions of the form A*i1)(§ §k+3) V)

and (6F X)),
Let us first study contributions from A*y9)(5(*+3)4)). Dropping an irrelevant numerical
factor, consider the term in the Lagrangian

LgO) _ —6idete(@@vywp])(5\7[‘“’1[)”})- (2.39)

Supercovariance of the theory allows the possible super-variation

6 = i(=6i 2N (pa (1. 7) (17 727 9,€)" + 2l F) (307 ) ) Gz

which, after using

6(k+3)L§0) _ —6idete((5\7[”"5(k+3)¢p})(@f?ﬂu%}) + 2(@@%5(“3)%])(S\fy[WW}))7 (2.40)

gives
SEHI L) — §(—6inpp) 2 p(7, 7)deteA 1S (EX*), (2.41)
where
P, 7) ~ p1(7,7) + pa(7, 7), (2.42)

after extensive use of the Fierz identity and the relation

GMVPGplpzp:s;"YuV’Yplpsz’Y —6G\e" + - (2.43)

Using the symmetry under interchange of p; and ps, we can set po = 0. In fact, we shall
only use the closure of y#1),,, where the two contributions are proportional.

We now use the closure of the supersymmetry algebra on +*,, to constrain p; (which
is easier to calculate than the closure of v,). First consider the closure at the level of
supergravity where we keep only the terms proportional to €1€5Dv in our analysis. We

— 11 —



make use of the definitions [(]?

F2,, = 30,A%

uvp vp)’ GHVP = _Eaﬁv Fu

vp>
D,e = i(ef(‘)[,,ep]m + ey O eum + ef,”a[uep}m>’y”pe +oeey (2.44)
and the supersymmetry variation
0D AZ, = VRE YN + VEeyuwA + 4iVEey b)) + 4V Oy, (2.45)
where a, 3 are the global SU(1,1) indices. We have also used
—eagVEVP =1, (2.46)

This gives us

i vp _*\a [ =k
1('7# p62) (EIVMDul/}p)

T_ vp, \a
_162 <’7}LD[V¢p} + IVpD[VQﬁu} + IVVD[/ﬂbp}) (7“7 pel) (247)

6, 621 (vr ) =

since the term involving F5 vanishes using y*~y,,....; v, = 0. Using the Fierz identity again,
we obtain

NG L ’
163, 8501 (v#4p,)® = i(Eay 61)<4’YJ’Y“ Dy, + ( "Dytpo — VMDU¢N)>

1 N a
+%(627“1"2“361)<—%102037“”%1##3%102(V“Dogw—v“Du%g)) . (2.48)

Note that there is no term involving (€271 5¢;).
For our purposes, it is enough to consider

T, P 1 01020 v
07016 00 = (@00 - gy @nmm a7 ) O# D (2:9)

The remaining terms in (2.4§) are obtained from the closure of [5&0), (550)]1/Ju by acting with

~#. They involve contributions from the equation of motion in [5§0),5§0)]¢u as well as from

the transformations
(51", 83 ]% = "Dyt + Dy + - (2.50)

where
€= —P, &+ -+, (2.51)

leading to (see section 1.9 of [B{] for a relevant discussion)

62, 857110 = € (Dytbyy — Dytby) + -+ . (2.52)

3The term proportional to Qe in 5(0)1/)# is not needed because 6(0)‘/}? = V2€* )\, and does not vary into
a gravitino. We shall consider the additional supervariation to G., coming from the compensating U(1)
gauge transformation later. It is not relevant for the present analysis.
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These are the only local symmetry transformations appearing in the closure that involve
D1p. They correspond to general coordinate transformations and supersymmetry transfor-
mations, respectively. Thus the 3771727 ¢; term in (R.4§) receives contributions only from
the equation of motion. However, the €27%¢; term in (R.4§) receives contributions from
both the equations of motion as well as from the local symmetry transformations.
Proceeding as before, we can calculate the closure involving the higher derivative cor-

rections. This gives,

(61785 ) 4 157 8 (v 4p) ~
(91 + 9GO (2956175 + (@m0 e)1H 7 ) e (2:53)

In (P.53), the relevant supergravity transformations involving p; are given by SON ~ @
and 60 ~ p*ie, while those involving g, are given by 6D ~ A*Xe. Some of them give
the required terms directly, while the rest give the required terms on Fierzing between 1)*
and A.

Note that unlike the previous case, we do not need to work out the specific coefficients
in the closure in (.53). Earlier, even though we are not interested in the exact coefficients,
we needed the exact coefficients in the closure to eliminate all but one coefficient in §*+3) \*.
However here we have only one coefficient to begin with so it is good enough to show that
the expected terms in the supergravity closure (and no others) arise in the closure involving
higher derivatives.?

Therefore closure of the supersymmetry algebra for 1 gives the gravitino equation of

motion
VOV Dy + ") (p1 4 g1) (—6ip) F A 4 =0, (2.54)
Next consider the contribution from (5(’“*3))\*)1,01,01/). The possible supervariations are
given by
SFEI AT = (W), GEED M) (i TMN) (T ) abs (2.55)
where I'M = {1,4#¥ ~ti#1}  Note that the only supercovariant supervariation has

I'M = 1, because ]5# ~ @;)\ However, every term in (R.59) is actually proportional to
GHED (AN (3,),

and is inconsistent with the closure of the superalgebra (R.29). Hence there are no such
contributions.

There are no contributions from the (y1*)? and A(¢1))* terms in the action, The
only remaining possibility is a contribution from the AA*i)* term in the action given by

(8F+3) YN M.
This comes from the P - 15*, G- G*, and F52 terms in the action. Thus

LY ~ detel (@A) ) + 9P (8,7pA) + A5 N) (i Ypaapiggia b)) (2:56)

4This will be the strategy followed later on as well. It could be that the specific space-time structure
does not match, in which case, the corresponding coefficient vanishes.
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It is not difficult to construct §*+3)¢* such that
sEHI L) L dete(—6inh)?F A1 (X*).
For example, we can take

6(k+3)¢z* ~ ()\15)aé2(k—1)éuup(6*,yuwp) + ()\15)bé2(k—1)éup1p2 (@;{ng’}’o)bea*
AP GPETIG 2 (7 75,70) s, (2.57)

where every term is multiplied by a modular form. However, no supervariation of #* is
consistent with the closure of the supersymmetry algebra given by (R.49). This is because
the contribution of the type (€277"%5¢;) to ([5%0),5§k+3)] + [(5§k+3), 5&0)])1/1* is nonvanishing
which contradicts (R.49). From now on, we will list only non-trivial supervariations.

Next consider contributions from §*+3) L) which give

(—6inpp)2F AO ().

There are no supervariations 8 T3)¢* or §*+3)X\* which give the required 673 L) terms

and are consistent with the closure of the superalgebra.

If this were the complete analysis, from (R.17), (:20), (2-29), (-37), (2:41)) and (2.59),

it would follow that

91 ~ pl ~ f(ll"rk‘,—ll—k)) ~ f(ll"rk‘,—ll—k))’ (258)

and that

Djpy g fOTFR1=R) | p(124k,—12-K) )f(12+k,—12—k) ~ LR =11=k) (2.59)

D—(12+k
leading to

D_(12+k)Dk+11f(11+k’_11_k) ~ fL+R—11-k)
Dk+11D—(12+k)f(12+k’_12_k) ~ f2HR—12-8) (2.60)
The couplings would satisfy Laplace equations on the fundamental domain of SL(2,Z).
What is missing from the discussion are the source terms. So we next consider the
contributions coming from terms in the effective action which are intermediate orders in
o/. These sources correct the Laplace equations to Poisson equations. The basic idea is to
further use the constraints coming from supersymmetry

<5<°> +3 a”“+35<’f+3>> (5@ +y° a”“+3s<’f+3>) —0. (2.61)

k=0 k=0

Apart from the invariance of the supergravity action, the existence of the supersymmetry
implies

5O gk+3) 4 (k43 gO) 4 > §m g — g, (2.62)

m>0,n>0,m+n=k+3

Only for k = 0 and 2 does the last term in (R.6), which contains the source terms, not con-
tribute. For those special cases, (R.60) gives the complete answer. The remaining equations
all receive contributions from the source terms to which we will turn later.
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2.1.2 The specific cases of k=0 and k£ =2

We now consider the equations in (2.60) for £ = 0 and 2. The constants of proportionality
can be completely fixed using the expression for the four graviton amplitude at genus

zero [B1, B9,

[(—a's/AT(—a't/4)T(—a'u/4) 4
N1+ ds/49)T(1+ /t/4H)T(1 + a'u/4)

AT (st u) = —13

64 ¢(5 ¢(3)?
= 7} <a’3stu +2¢(3) + 1(—6)0/2(32 + 2 +u?) + —(96) o3 (8% + 13 +u?)

+%a’4(82+t2+u2)2+g(%§(()5)a'5(35+t5+u5)+- - >R4, (2.63)
where s,t, and u are the Mandelstam variables and s + ¢ 4+ u = 0.

Let us consider the £ = 0 case first. From (), we see that the R* interaction has
a tree level contribution proportional to ¢ (3)7’5’ % in Einstein frame where the metric is
duality invariant. Also it can be shown that the genus one amplitude has a power law
dependence in 79 (this is also true for the genus two amplitude for the k = 2 case which
we discuss next). Because this has a unique space-time structure along with )\15fy“w;j, it
follows that the tree-level contribution to

FALTID Dy DOC(3)723/2 ~ g(3)723/2

and so [},

25-21 _ _
T FAL=IN (2 7y, (2.64)

D_yoDyy f0 (1, 7) = —

Next consider the G4A157“¢; interaction. We have looked at the part of the interaction
which involves (G**G uwp)?. However a similar analysis for the other space-time structures
shows that the modular forms multiplying them satisfy (R.60) as well with possibly different
coefficients. However, because these modular forms cannot receive perturbative contribu-
tions beyond genus two [, and the genus one contribution vanishes [BJ], we conclude that
these modular forms satisfy the same Laplace equation and contribute perturbatively only
at genus zero and two. Thus they are all proportional to each other. In fact, the complete
spacetime structure can be deduced using topological string amplitudes and is proportional

to [[L1]

go(éwpéwpf _ 15@M1V1p1 @musuzépbsMéy;;z;m + vawl GHik2p1 Gul;)lwéus (2.65)

pave”
Noting that the genus zero Einstein frame D*R* interaction is proportional to ¢ (5)7‘5 / 2,
we see that

FO318)  Diy . D¢ (B)T ~ ((5)rS 7,
leading to ]

_ -~ B 31-23 _ _
D—14D13f(13’ 13)(7',7') = —Tf(lg’ 13)(7'77')- (2.66)
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In fact, these modular forms for k = 0 and 2 are given by [2]

g+1/2
T2

(qv_q) ) —
fgtm P (m7) Z ) (m + )9+ at12(m 4 nr)g—a+1/2’ (2.67)

(m.n)#(0,0

for (g,q) = (1,11) and (2, 13) respectively. In this presentation, the modular forms satisfy
the equation

flo=9(r 7). (2.68)

= _ _ 1 1
4D—(qul)qug(q’ Vr,7) = (9 +q+ 5) (9 4= §> g

We now turn to the contributions from the source terms.

2.1.3 The source term contributions for k = 3

Let us first consider in some detail the k& = 3 case which is the first instance where the
source term contributes. The various technical details and arguments are along the lines of
the preceding discussion so we will only mention the main results. The analysis involving
(5©), 50 and (6©),5)) already appears in section P-1.1} So we only need to consider the
contributions involving S®) and 6.

Among all the terms in S| there is only one term given by (dropping overall numerical

factors)
LY = detef 9 (7, 7)GO (AP ) (Mpurp ) (2.69)

which contributes non-trivially to the equations. The various other terms in S®), as well
as their possible supervariations 63, either do not give the required space-time struc-

3)

ture, or are inconsistent with closure of the superalgebra. Now L13 gives no contribution
under the supervariation 6©) into deteG6A16(E*7“w;). The contribution under §®) into
deteGON6(eN*) is given by

SOLY ~ q(r,7) & (1, 7)deteGONO(EXY), (2.70)

where
5(3) )‘Z ~ Q(T7 77-)()‘14)cd(fyuypfyo)dc(7uup€*)a- (271)

Closure of the supersymmetry algebra acting on A* yields the equation of motion
YOV D LN + a3 (D) GHFA ... =0, (2.72)
thus leading to Di1q ~ (12712 From the constraints for k = 0, it therefore follows that
q(r,7) ~ fOL (7 7). (2.73)

Using this, as well as the previous constraints, we are finally led to the coupled differential
equations

D14f(14’_14) + Alf(15,—l5) _ 07
D_15f(15,—15) + )\2f(14,—14) + Agf(ll’_ll)f(3’_3) — 0. (274)
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Combining the equations, we see that coupling for the GONI6 interaction satisfies

DD 15 f15715) — o f05-15) 4 g, <f(12,—12)f(3,—3) n f(11,—11)f(4,—4)) : (2.75)

while the coupling for the G6A157“wz and GG PGZVP)AIG interactions satisfy
D_15Dya fO419) = o fO4=14) o p(11,-11) £(3,-3) (2.76)

where we have used Dy fUL—10D = 02712 and DyfG=3) = &= From (£.79)
and (R.70), we see that these couplings satisfy Poisson equations on moduli space sourced
by interactions in S®). In fact, the interaction involving f*~%) is given by

LY = detef (7, 7)GE. (2.77)

Let us give a heuristic derivation of (R.74), intuitively showing why this is the only
possibility. Based on considerations of SL(2,Z) invariance and the fact that the set of
interactions given in (R.§) involving at least fifteen dilatinos is special, we see that the
most general system of equations that could have arisen from our analysis is (dropping
various coefficients)

Dy f4=14) 4 p(15,215) 4 ¢(12,-12) £(3,-3) 4 p(11—11) ¢(4-4) 9 (2.78)
D15 f05=15) 4 p04=14) | 0410 oy 4 e(1-10) £(3,-3) | p(12212) £2-2) g (2,79)
Diagy ~ fU5719) g1 ~ fOL71D) g1+ p1 ~ fAL71Y, (2.80)

From (R.7§) and (P-8(]), we obtain

Dy fO4=14) 4 p(12512) ¢(3,-3) 4 p(L-10) (44  p o (2.81)

leading to
g1 ~ fA4=19 4 p(11-11) £(3,-3) (2.82)

from which one concludes that either both the terms involving

f(12,—12)f(3,—3) and f(ll,—ll)f(4,—4)
are present in (2.7§), or both are absent. We therefore get the set of equations (R.7§) and
D5 f(15719) 4 pO4-14) 4 p(11,-11) £(3,-3) | p(12,-12) £(2-2) (2.83)

Acting with D14 on (R.83), we see that the last term involving F12712) £2-2) gt be
absent because it gives a contribution

D14(f(12,—12)f(2,—2)) ~ f(13,—13)f(2,—2) 4.

9

but there is no term in the R* multiplet which has modular weight 13. As we shall see
later, this argument does not generalize to higher k because it is possible to have such a
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contribution from the D?'R* multiplet for low enough &’. Finally, acting with D_;5 on

ET), we get
D_15D14f(14,—14)_|_f(14,—14)+f(11,—11)f(3,—3)+f(12,—12)f(2,—2)+f(10,—10)f(4,—4) ~ 0. (284)

Now the last term in (R.84)) involving fF10.-10) griginates from D_15(f(11’_11)f(4’_4)) and
involves the interaction
L) = dete f10710 (7, 7)G2A12, (2.85)

However, this interaction has only fourteen dilatinos and is not expected to mix with the

special set of interactions we are considering. Thus the terms involving both f(12:-12) £(3,-3)

and fL=1) f(4=4) are absent in (2.79), and we have obtained (2:74), (.79) and (2.70).
This generalizes to all £ modulo the preceding caveat.

As before, (2.75) and (R.76) have been obtained by considering a specific space-time
structure for the relevant interactions. Considering other space-time structures, we see that

they give the same equations though with possibly different coefficients. This phenomenon
clearly occurs for higher k as well as we shall see later. In fact, for £ > 4, it is crucial that
there is more than one modular form of a given modular weight that arises this way.

The k = 3 case is borderline and there might or might not be several modular forms
for different space-time structures. This comes about because we know that the modular
forms cannot receive perturbative contributions beyond genus three [fl. The genus three
contribution of at least one of the modular forms is expected to be non-zero since it should
be related by supersymmetry to the genus three amplitude of the DSR* interaction. This
genus three contribution is non-vanishing and is given by one loop supergravity in eleven
dimensions compactified on 7% [f], B4, Bg] after using duality [[[d]. This computation actu-
ally gives the type ITA amplitude but the perturbative parts of the type IIA and type 1IB
contributions are the same for the DSR* interaction [.

Now the source terms in (R.75) and (R.7¢) involving

F02-12) (-1 p(4=0) p(3,-)

) )

contribute at genus zero, one and two only. The genus three contribution only enters the
Laplace equation part of (R.75) and (2.76), and so it is possible to have only one modular

form which gets its perturbative contributions this way. However, it is also possible to have
more than one modular form where each form satisfies a separate Poisson equation with
appropriate asymptotic behavior.

We know that the genus three contribution to D®R? is non-vanishing [[§]. So among
the various contractions for GG, there should be one coefficient function with a non-
vanishing 3-loop contribution. Let us consider that particular coefficient function. Because
the genus three contribution involves only the Laplace equation part of (.76, taking
FA4-14) Ty 3 immediately leads to®

9

5 (2.86)

o] =

5This also has a solution 75 which is inconsistent with string perturbation theory.
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We now fix a3 using the expression for the genus zero amplitude in (2.63). The f(14~14)
amplitude is related by supersymmetry to the DOR* amplitude and so we take

fOAT = (@3 4+

up to an overall irrelevant constant. We need the perturbative parts of the weak coupling
expansions for fA5L=11) and £(3=3) which are obtained by using

9 B 25 _
F(i) fG=3) = 4/ Dy D1 Dy By s, r(g) fOT =219 /xDyg ... DoEyp,  (2.87)
leading to
4 -
1O 7) = 2@ - @
— 4 -
FOL=I (7 7) = 2¢(3)r/2 483C(2)T vz (2.88)

after using (B.H).
Equating terms of O(73) on both sides of (R.70) and using (.84), we find that

3
Similarly after equating terms of O(7y) and O(7; '), we can calculate the genus one and

4-11) " The calculation of the genus three contribution is

genus two contributions to f a
involved. It should be possibly by generalizing a similar calculation in [[§]. Then one
can also determine the non-perturbative contributions to f(1*~1% which involves contribu-
tions from single D-instantons, and D-instanton/D-anti-instanton pairs. The first equation
of (B.74) then determines f(1%~15),

We can say something additional about the coefficient functions for other space-time
contractions. Suppose we consider a different coefficient function f14=14). Then it must

satisfy

D_15Dyu fM4=1 = gy fUL71D) 5y p(1171D) £(3,78) (2.90)
Again using Berkovits’ theorem [f]], we find that the perturbative part of f F(14,-14) g given by
FO o (2.91)

If the 3-loop contribution to f (14,-14) j5 non-vanishing then it follows that

99

o =—% (2.92)
and therefore f (14,-14) is proportional to f%=14)_ If the 3-loop contribution does vanish

then the coefficient function can be linearly independent.

Employing supersymmetry, we see that the coefficient of the DSR* interaction can
also be a sum of modular forms f(®9{} only one of which must receive a perturbative
contribution at genus three (call it f(©9{0}) Furthermore, each of these modular forms
must satisfy

0? , _ _ _
4 287’8’f OO (7, 7) = A f OO (7, 7) + Mgi By o (7, 7) B3 o (7, 7). (2.93)
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Based on our discussion above, the source terms in (2.93) are uniquely fixed by the modular
properties of (B:93). Since f©0{# has weight (0,0), the sources must also involve weight
(0,0) forms because there are no modular forms of weight (—¢,q) to pair with forms of
weight (g, —q) for any non-zero ¢. This follows because both coefficient functions multiply
“chiral” couplings where by “chiral” (“antichiral”) we mean those couplings which have
weight (g, —q) for positive (negative) ¢, or equivalently positive (negative) U(1) charge.
For example, the A0 coupling f(!2-12) is chiral, whereas the (A*)16 coupling f1212) 4g
not. Note that none of these couplings are holomorphic with respect to 7.
Therefore f(O010} gatisfies
12 O 000} () _ 19 000} () 4§ _ _

TS ﬁf (r,7) = 12f (1,7) + )\E3/2(7', T)Es)o(T, 7). (2.94)
Extracting the tree level contribution, we see that f©010} = 4¢ (3)%73 which implies
that A = —6. One can immediately compute the remaining perturbative contributions
to fOO0}(7, 7). These contributions have been computed in 3. The numerical coeffi-
cients obtained from (R.94) for the genus one amplitude matches the string theory compu-
tation while the genus three contribution matches the supergravity computation exactly;
the genus two amplitude is not known by either a direct string or supergravity calculation.

0,0){i

Thus if there are any other modular forms f( }, they can only receive a perturbative

contribution at genus two which is inconsistent with (R.93); hence they vanish.
2.1.4 The source term contributions for k£ > 3

We now derive the structure of the equations which determine the couplings for general
k. Some of the analysis is similar to the kK = 3 case so we will be brief. We already know
the contributions from S**3) and §© determined in section P.1.1], so we focus only on the

source terms. Consider terms in the action S (k_kl), where k' < k. There are two kinds of

(k—Fk')

interactions in S which are relevant for us.

The first kind of interaction involves the terms
LK) 2 dete fOHE ) (7, 7) G (R5p2 1) (R p A7),
LK) = ot H D ()G Gy Gl ). (295)

Under the supervariation 6*'*3) they do not vary into deteG2* (6*7“1/12))\16. However,
they vary into

5(k’+3)(L§k—k’) + Lgk_k/)) -~ {tlf(k—k’,k’—k) + t2f(k—k’,k’—k)} deteéﬂk}\lﬁ(a\*)’ (2.96)
where

SEFINE = 147, F)G (A)ea(179) e (€ o
(5(k/+3)1/fz = tz(T,f)éz(k/_l))\16(70102037;16*)[1@010203' (2.97)

The other kind of interaction involves

Lgk—k’) — dete f=F =1k =k+1) (- 7:)@2(k—k’—1)((§u1/p@;yp)2, (2.98)
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Under the supervariation 613 this also does not vary into deteézk(é*’y“wl’j))\lﬁ but it
does vary into

S LR o bl LR k) (2 21 (7, 7)deteGPF A0 (A, (2.99)
where
SN, = ta(r, )G TINOG (7€) (2100)

Q

after using the Fierz identity. From (R.9§), it follows that this contribution exists only for
k' < k —1, and is absent for the k = 3 case.
From closure of the superalgebra, we obtain®

f(12+k’,—12—k') f(ll—i—k’,—ll—k’)

D11ty ~ ) iy ~

tl + t2 ~ f(ll'f'k?,,—ll—k‘/)’ t3 ~ f(12+k?,7—12—k‘/) (2101)

)

which leads to
tl ~ t2 ~ f(11+k?/7—11—k‘/) ~ f(ll-f—k/,—ll—k‘/)' (2102)

Taking into account these source term contributions for all values of &', we find the equa-
tions (again ignoring the numerical coefficients)
D11+kf(11+k,—11—k) + f(12+k,—12—k) —0
)

D—(12+k)f(12+k’_12_k) + f(11+k,—11_k)+

+Z (f(ll—‘rk,,—ll—k/)f(k—k/,k/—k) + f(12+k”_12—k’)f(k—k’_l,k’_k-l-l)) = 0. (2103)
k!

Note that the structure of the second equation in (2.109) is strikingly similar to the holo-
morphic anomaly equation satisfied by certain protected interactions in the effective action
of N = 2 string theory [Bf]. This is unlikely to be an accident!

The coupling for the GZ¥A16 interaction therefore satisfies the equation

12+4k,—12—k) _ akf(12+k’_12_k)
+D114x ) (bkk’f(11+k/’_11_k')f(k—k’,k’—k)
154

_|_ckk/f(12+k’,—12—k’)f(k—k’—l,k’—k—l—l)> ,(2.104)

Di1ikD_ (1241 f!

while the coupling for the G%)\m’y“w; and Gz(k_l)((?“”pé;yp))\lﬁ interactions satisfy
D_(12+k)D11+kf(11+k’_11_k) — qy, f(1HR—11=R)
n Z <dkk/f(11+k’,—11—k’)f(k—k’,k’—k)
k/
+ekk,f(12+k’,—12—k’)f(k—k’—l,k’—k—i-l)>7 (2.105)

where ag, bgr/, Crpr, dirr, and epps are undetermined coefficients. We should note that the
source terms in (R.104) involve Dji1 acting on a product of two modular forms. This

SIn calculating the closure condition involving t3, we use §(® X ~ el
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can give rise to sources that are cubic in modular forms.” These cubic source terms first
appear for couplings of order D'?R? since the source terms involve products of a covariant
derivative acting on a coefficient function from order DSR* multiplied with a coefficient
function from order R* [B; see also for related comments.

As before, in deducing equations (2.104) and (R.107), we have focused on the modular
forms associated with interactions where the space-time structure involves G2 = GrrQy Wwp-
Modular forms of the same modular weights associated with other space-time structures
will satisfy the same equations but with possibly different coefficients. So we should label
these other coefficient functions with an extra index, which we will ignore for the sake of
simplicity.

2.2 Sufficiently large k&

The discussion above is strictly valid for sufficiently small k, since we cannot write G ~
(¢1p)?F for arbitrarily large k because of the exclusion principle. Noting that

@;Vuwp = 1/1Z (’Yowu)abwz

where (797, )ap is a symmetric matrix, and that ¢y, allows for 160 indices to be assembled,
we see that for k& > 40, we have to take

G2k — (G010203GU10203)(1~:—4O)(_361/’,L%¢p}1/’,*[ufvap})40 + o= G0 (i) 4
(2.106)
Thus N = 40 and we can absorb 80 powers of the derivative in the fermions and the
remaining powers in G. However, the explicit value of & where this transition occurs is not
really needed in our analysis.
We again consider the interactions

L§k+3) — detefa2Hh—12-K) (-

L§k+3) _ detef(ll—f—k,—ll—k)(T’

L§k+3) _ detef(ll—l—k,—ll—k) (r

)G2(k—40) (—6i1/11/1)80)\16,
JGHEAD (—6igp) Ny
)G2EA0 (—Gipep) B (GHP G, )NE. (2.107)

|

)

Rl

il

)

The analysis is very similar to the k < N case and leads to the same conclusions. In various
places, there are some modifications needed with

(—621/11/1)2k N G2(k_40)(—6i1/}1/})80, (—621/}1/1)2(k_1) N G2(k_40)(—6i1/}1/})78.

The only issue is to explicitly see the appearance of modular covariant derivatives with
the correct modular weights in the supervariations and the closure of the superalgebra.
This happens by adding a compensating U(1) gauge transformation in the supervariation
of G, given by

5OG,,, = %(a* — NGy, (2.108)

to that given in (R.44) and (£.45). This is fixed by the fact that G,,, has U(1) charge 1.
The resulting equations for the couplings take the same form given in (R.104) and (R.109).

"We would like to thank M. B. Green for discussions explaining this point.
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3. Some consequences of the Poisson equations

We now explore some consequences of the Poisson equations (2.104) and (R-105). We will
argue that these protected interactions satisfy a perturbative non-renormalization theorem.
We also demonstrate various qualitative features of specific protected interactions based
on constraints of unitarity and known perturbative amplitudes.

3.1 A perturbative non-renormalization theorem

From the structure of either (2.104)) or (R.104), we want to argue that our special couplings

can receive only a finite number of perturbative contributions. This follows from noting
that for low values of k, the couplings have this property as we have explicitly seen. We can
then apply induction to argue the same result for all k because the source terms themselves
at each step only involve a finite number of perturbative contributions.

The remaining issue is to constrain perturbative contributions for the terms multiplying
the ay, coefficients which are present in the absence of the source terms. So we consider the
source-free Laplace equation. Solutions to this equation receive at most two perturbative
contributions which completes the argument.

As we have discussed earlier, it seems quite plausible that this special renormalization
property will extend to all terms in the supermultiplet of couplings related by supersymme-
try. So we might reasonably expect that the D?*R?* coupling has this property. Regardless,
we can conclude that there are an infinite number of protected interactions in type IIB
string theory. Each interaction receives only a finite number of perturbative contributions
together with a collection of non-perturbative contributions.

3.2 The k = 4 case and aspects of the D3R* interaction

Let us analyse the kK = 4 case in more detail. This is the first case where unitarity con-
straints require a new type of perturbative contribution to modular forms which multiply
interactions that are not vanishing on-shell. The source terms for the D¥R?* interaction are
given by a particular interaction in S*% (related by supersymmetry to GQA16) that vanishes
on-shell, but is needed on the basis of unitarity constraints [Bg. To see this, as well as to
understand some aspects of the prototype D¥R* interaction, let us briefly discuss non-local
terms in the effective action.

Since we are looking at the 1PI effective action, we allow massless modes to propagate in
loop amplitudes. This leads to terms in the effective action which are non-analytic in the ex-
ternal momenta and are therefore non-local. This problem can be avoided by looking at the
Wilsonian rather than 1PI effective action but at the cost of sacrificing duality invariance.

The behavior of this non-analyticity is dimension-dependent. In ten dimensions, it is
logarithmic. In a string-frame scattering computation with string metric, g,,, there are
terms involving

In(s) = In(g" kuky) = In(\/m2 9" kuky) = In(/12 5) = %111(7'2) + In(3) (3.1)

where §,,, denotes the Einstein frame metric. So we can attribute any In(7) terms in the
coefficient functions of local couplings in Einstein frame to non-local interactions in string
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frame. These non-local interactions can therefore contribute to the modular forms for the
D?R* and related interactions, and must be considered in our analysis.

Some of these non-local terms in the effective action have been analyzed based on
unitarity [[[6], and the first few are schematically given in the string frame by

o/t <Sln(—o/8) + 0/37'2_3/2E3/2841n(—0/8) + a7 28 n? (—a/s) + - - - )R4, (3.2)

where we have dropped the additional terms needed to symmetrize in s, t, and u for brevity.
The O(a’) contribution in (B.2) is at genus one, the O(a/7) contribution is at genus one and
two, while the O(a’®) contribution is at genus two only. In Einstein frame, these non-local
terms make a contribution from

o/t (lnT2§ + 0/3E3/21n7'2.§4 + o/*(Inmy)%85 + - - >7@4 (3.3)

to the local terms in the effective action. So we see that the modular form for the D3R4
interaction receives contributions logarithmic in 7. It is reasonable to expect that there
might be similar logarithmic terms in the 68)\157“1/1; interaction.

Note that the first term in (B.3) vanishes on-shell using s +¢+u = 0; however, we need
to consider its effect as a source term for the higher derivative interactions [BJ]. In fact, inte-
grating by parts, we see that this term does survive in the effective action for non-constant
7 at order D?R*. We denote the complete modular form for D?*R* by Z(r, 7), remembering
that it receives a perturbative contribution only at genus one proportional to In(72). By
acting on this modular form with a suitable number of modular covariant derivatives, we
get source terms for the Poisson equations satisfied by the various protected interactions.

Returning to the interactions in (R.105),® it follows from [ both that there are no
perturbative contributions beyond genus four, and that the perturbative contributions are
the same in type ITA and type IIB. From [[[§], we know that the genus four amplitude for
the D¥R* interaction in type IIA string theory is non-vanishing; consequently, we expect
the genus four G8A157“¢; amplitude is non-vanishing as well by supersymmetry. The
genus four contribution to D®R? is completely determined by the one loop four graviton
amplitude in d = 11 supergravity compactified on T2 together with duality B, B4, B3

Because the genus zero and genus four amplitudes are both non-vanishing, and the
source terms in (R.10§) come from the products of modular forms in the R* and D?>R*
supermultiplets which contribute only at genus one and two, there cannot be a single
coefficient function satisfying a single Poisson equation: there must be at least distinct two
modular forms!

The different spacetime structures involving G8A15y“w; must give at least two in-
dependent modular forms of the same modular weight. One of them has a genus zero

7/2 (

contribution ~ 7,”” (but no genus four contribution) and satisfies

~37-25 5(15,-15)

D—16D15f1(15’_15)(777_') = 6 1

(7,7) + sources, (3.4)

8There is a similar analysis for (2.104).
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~9/2

while the other has a genus four contribution ~ 7, (but no genus zero or genus three

contributions) and satisfies

= 215-15), _ _ 21% sas5.-15),
D1oDis ™, 7) = ~ 2 f5 )7, 7)  sources. (3.5)

It would be interesting to understand whether a logarithmic m-dependence appears in the
G8A157“¢; or G\ interactions. Our analysis implies that there can be a logarithmic
dependence only if the sources from D?R* contain a logarithmic dependence. In principle,
this can be determined by direct computation of all the sources at order D?R*.

There are alternative approaches that involve direct computation. The first is to
perform an explicit calculation of the genus one amplitude in ten dimensions. The second
involves compactifying on a circle and studying the ten-dimensional limit to analyze the
contribution to the threshold corrections that come from the Kaluza-Klein modes. Both
these calculations are technically involved.

What we can conclude is that the various space-time structures in the deteGB\16
interaction must yield at least two independent modular forms, even though each separate
space-time structure gives rise to only one modular form. That the D®R?* interaction has
a unique space-time structure can be seen from (.6J). The discussion above shows that
the coefficient function fg)g%, which multiplies this D®R? interaction, must split into at
least two modular forms

0,0) 0,0 0,0)
fé)snzx —fl( )+f( (3.6)
The modular forms, fl(0,0) and f2 0 , receive perturbative contributions at genus zero (but

not at genus four) and genus four (but not at genus zero or three) respectively. They satisfy
the equations

9? 35 .
15 5 h0 0 n) = TR () By (D25 7),
0 99, i} -
43 g (0 D7) = Zf2(0,0) (7,7) + voli3)o(1,7) Z(T,T). (3.7)

From (2.63), ignoring overall coefficients, we take
fl(ovo) - ((7)7-27/2 4. (3.8)

Substituting into (B.7) gives

. 2
00 _ ¢(py2 - Y g( )21+ 4 ) + A7 2 (1~ 4 Inmy) + agry P -

48
A 7T -
(0.0 _ _mg( )7 3/2(1 +12 Inm) 4232 TP —12 ) Fagry, P4, (3.9)
using
Z(T, 7—-) — 1n7—2 + e (3.10)

In (B.9), az and a4 are the genus three and genus four contributions, respectively, while the
dots represent contributions from D-instantons.
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Note that (B.9) has In7s contributions at genus one and two, which is consistent with
the structure in (B.3). Also the Tg /2 part of the genus one amplitude for the D¥R? interac-
tion vanishes [ff(], and so the sum of the contributions to 7'23 /? from all the modular forms
must vanish.

There is an interesting observation that follows if we assume that there are precisely
two modular forms for D®R*. This is the minimal possible number. In this case, v; and
v9 are related by the condition

V9 = —9V1 (311)

/2 1/2

contribution vanishes which leaves only the non-analytic contribution at genus two as well

which ensures that the Tg contribution vanishes. However this also implies that the 7,
as genus one. The genus two contribution is currently unknown. It would be interesting
to see if this is indeed the case.

3.3 The k > 5 case and aspects of the D'"R? interaction

As a final application, let us consider the kK = 5 case and impose the constraint that the
modular forms cannot receive perturbative contributions beyond genus five [fl]. Also the
genus five amplitude is non-vanishing in type IIA string theory, as can be seen from the
one loop four graviton scattering amplitude in d = 11 supergravity on T2 M. Soit is
natural to expect that the genus five type IIB amplitude is non-vanishing as well.? In fact,
if one considers the supermultiplet generated by the part of the four graviton scattering
amplitude involving contributions only from the even-even spin structures (which involve
the space-time structure tgtgR*), the perturbative equality follows trivially for all k. The
difference arises for the odd-odd spin structure contributions (which involve the space-time
structure e1ge;0R*). The tree level amplitude in (P.63) involves the even-even spin structure
contributions, and we focus only on that part in the discussion below.

Consider (R.104) where the source terms arise in two different ways: (i) they either
involve the products of modular forms in the R* and D*R?* supermultiplets, or (ii) the
squares of modular forms in the D?*R* supermultiplet. In either case, the source terms
receive perturbative contributions up to genus three only. Assuming that the genus four
contribution is non-vanishing, it follows that the genus four and five contributions must
both be given by the Laplace equation part of (2.104), which is not possible.

It immediately follows that there should be at least two modular forms f1(17’_
~ ,— 7)
f2(17 1

17) and

which receive perturbative contributions at genus four ~ 7, 4 and genus five ~ Ty 6

respectively. Thus they satisfy the equations

DlﬁD_nfl(l?’_l?) = —63f1(17’_17) + sources,

— S(17,— 115 (17—
D16D—17f2(17’ = —7f2(17’ ' 4 sources. (3.12)

Note that f1(17’_17) ( f2(17’_17)) does not contain a perturbative contribution at genus five

—17)

(four). There can be more modular forms ﬂ(l?, , some of which receive perturbative

9The proof by Berkovits [ﬂ] demonstrating perturbative equality for type IIA and type IIB stops at
k = 4. Tt can probably be extended to higher values of k along the lines of @]
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contributions up to genus three, while others receive perturbative contributions at genus
four or five (but not both).

As before, different space-time structures in deteGON6 must yield at least two inde-
pendent modular forms, though each separate space-time structure gives rise to only one
modular form. This phenomenon continues for higher k& as well, unless some perturbative
contributions vanish for a specific value of k.

What does this imply for the D'R* interaction? From (B-63), we see that there is
again a unique space-time structure, and so the discussion above shows that the modular

0)

form f (DO170R4 multiplying this interaction must split into at least two modular forms
0,0 (0,0) , 70,0
FOO e FOO OO (3.13)

where fl(0,0) ( f:2(0,0)) receives perturbative contributions at genus four (five), but not at
genus five (four). In fact, they must satisfy

o2 .
4732 557 fl(o’o) (1,7) = 20f1(0’0) (7,7) + 1 B3 o (7, T) E5 )2 (7, T) + M Z (T, )2,
0% - ;
47—22 (97'877' f2(0’0) (7—7 7_—) = 42f2(070) (7—7 7_—) + M2E3/2 (7—7 7_—)E5/2 (7—, 7_—) + )\QZ(T, ’7_')2. (314)

The source terms in (B.I4) are determined from the constraints that at this order they be
(a) quadratic in lower coefficient functions with non-negative U(1) charge (b) of modular
weight zero. These are sufficient conditions to determine the sources at this order in the
momentum expansion.

Let us analyze (B.14) in some detail. From (R.63), ignoring overall coefficients, we take

FOO = c3) B+ (3.15)

for ¢ = 1,2. This immediately leads to

H1 = _27 M2 = _§7
i 8 8 M2 1
1% = KB + 5B + [1—5<<3><<4> -5 (ﬁ g o+ (11172)2>]
P @)W a4
. 3 20 Ao [ 43 1
0 = C(3)CG)S + 5C2)CE)3 + [54 (3)C(4) — 4—; <@ — 5y 2+ (ln72)2>]
PR + a5y e (8.16)

where a4 and a5 are the genus four and five contributions, respectively. The dots represent
contributions from D-instantons.

From (@), we see that the total contribution to the genus two amplitude proportional
to In7y vanishes so the sum of all such contributions from the various modular forms must
vanish. The genus one contribution proportional to ((2){(5) is consistent with a direct
string one loop calculation [i(j. Though we do not have sufficient perturbative data to fix
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a4 and as, we can keep only the contributions from the terms involving p; and s in (B.14)
to obtain their dependence on the zeta functions. To do so, we proceed exactly along the
lines of [[[§], and so we mention only the results

Mutiplying the equation involving f2 by Er(1,7), and integrating over the funda-
mental domain of SL(2,7Z) gives

o

1

> e 3/2) 52, (3.17)

%= 1351
-

where we have used both (B.§) and (B.7), the Rankin-Selberg formula (B.§), and

32

/OO drz® Ky (z) Ko (x) = = (3.18)
0

Similarly, multiplying the equation involving f1 by Es5(7,7) and using

/000 dra Ky () Ky (x) = 2, (3.19)

we find
ay = 2%2 Z (n,3/2)u(n, 5/2). (3.20)

Finally, we use Ramanujan’s formula [AJ]

i i ) = C(r)C(r+2s — 1)¢(r +28 — 1)¢(r + 25 + 28 — 2) (3.21)
—n C(2r +2s 425" —2)
to obtain
ay = iw%(ﬁ) as = iw%(g) (3.22)
* 74050 w0 9835 ' '
Taking into account only the terms involving p; and pg in (B.14), the non-perturbative

7(0,0)

contributions to f; can also be evaluated along the lines of [[J]. These correspond to
D-instantons effects as well as contributions from D-instanton/D-anti-instanton pairs.

As a consistency check for the genus five amplitude, consider the four graviton ampli-
tude in d = 11 supergravity at one loop on 72 [f]. Using (B-63) to fix relative normalizations,

we obtain terms in the amplitude in string frame given by

a’5<7C(f;§é5)722(35 L) e ZLg( 3) 2_8W5(s,t,u)>724, (3.23)
where
5 _ o5 5 5 _ L (5.4, .5
after using
w3 w2 5
Gs, = / dwg/ dwg dw1 Swl(wg —wsy) + t(wy —wi)(1 — wg)) . (3.25)
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Hence the genus five contribution in (B.22), which is proportional to 72((8), is consis-
tent with considerations of supergravity and duality. Similarly, we expect the genus four
amplitude to be proportional to m2¢(6).

This structure gets more involved for higher values of k& where both the D?*R* and the
G2k \16 interactions have different space-time structures. The first case occurs for £ = 6
where the D'?R* interaction yields both

(2 4+t +u?)PRY and  (s® + 12 +u?)?R?

when expressed in momentum space. Some or all of the different space-time structures can
give different modular forms. However, for the D?*R* interaction, the modular form that
multiplies a particular space-time structure can further split into a sum of independent
modular forms as we saw above. This cannot happen for the G2k )16 interaction based on
our general analysis.

From considerations of the four graviton amplitude at one loop in d = 11 supergravity,
one can argue that the D?*R? interaction does not receive perturbative contributions
beyond genus k in type IIA string theory [[[6]. The same is true in type IIB string theory
if we restrict to the tgtgD?* R* part of the amplitude. So for k > 5, we see that the source
terms in (R.104) and (R.109) contribute up to genus k—2. The Laplace equations must then
provide the genus £ — 1 and k contributions. So there must be at least two independent

modular forms of a given weight.
Let us denote the two modular forms which receive contributions at genus k—1 (but not

at genus k) and k (but not at genus k—1) by f1(11+k’_11_k) and f2(11+k’_11_k), respectively.
Then the behavior
1(11+k,—11—k) N 7_2(7—3k)/2, 2(11+k,—11—k) N 7_3(1—1%)/2 (3.26)
constrains (.104) and (2.109) as follows
D—(12+k)D11+kf1(11+k’_11_k) - - 29)1(§k L 1(11+k’_11_k) -+ sources,
D—(12+k)D11+kf2(11+k’_11_k) = ko 25)1(65k 2 2(11+k’_11_k) + sources.  (3.27)

This leads us to conjecture that the genus k — 1 coefficient of D?*R* is 72¢(2k — 4) up
to a rational proportionality constant for k£ > 3. This is proportional to the genus k£ — 1
contribution to D?*=DR* as shown in [[[§].
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A. Useful formulae from type IIB supergravity and some spinorial iden-
tities

The spinors in type IIB string theory are chiral spinors. The dilatino, A, and the gravitino,
1, have opposite chiralities while the supersymmetry parameter, €, has the same chirality
as the gravitino.

The relevant linearized supersymmetry transformations are

807 =2meN, 507 = —2ment,
sOem = i(ey™p, + "),

SON = iyhe B, — i’y‘“’peéwp + %‘A(a*) — %‘A(m),

i o f 1 : ; *
T T A S I 96 (VMVP)\GVP/\ - 97P/\GW)‘>E

480
7 fy AP c* L Jy APL-P5 ¥
16 VoA € — V1. ps AUy €

64, = D,e+

1680
7 9 o o -
+§ Z’Y,[Y + 3"}/ m e)\’yp)\

1 1 - 1 -
- <—'m””’2”3 + 67p1p2p3’m>6)"}’p102p3)‘ + 560 Y T M A]

24
1 . —\ ¥ 1 . —%
+ZW“(EA ) — ZW“(E A), (A1)
where
N 10,1 -
P, = —FE kA
a 279 Yud
G,uup = G,uz/p - 3¢[u7up]/\ - 62'?#[;%%]7
. _ 1-
Fs pyops = F5 s — 5w[u17u2u3u4wus} - 1_6)"}’#1---#5)‘- (A.2)
There are useful relations for the dilatinos:
r 1 a ar
()‘ )ar+1"'al6 = ﬁeal”'alti)\ REERD N

()\14)ab)\c)\d = Alﬁ(aacabd - 6ad5bc)a

()\14)ab)\c = (Als)b(sac - ()\15)a6b07

(M) A0 = 5BALE, (A.3)
Our metric has signature mostly plusses and the gamma matrices are real with the trans-
pose given by

70 =~ ()T, (A.4)
Some useful relations involving gamma matrices are summarized below:
T (320, 0) = —16( 00012813 — 842 6Ll

vy Tv2 Tr3 vy “v2 Tv3

K2 SH3 SH1 Hn3 SH2 SH1 Hn3 SH1 SH2 H1 SH3 SH2
+5u1 51/2 51/3 - 51/1 51/2 51/3 + 51/1 51/2 51/3 - 51/1 51/2 51/3 > ’
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’YM’YV’YM = =8V, ’Yu’}’upa’m = _4’Yup07 (A5)
VWVWP = —T2",

VYo es Y = 0, Y P Yo Yy = 2887s,
YY1 Yuvp = —48%01095
’Y“VP'YUlagUg’Yuup = —48Y5109035 ’YHVPPYUl"'UAL’YMVP = 48751045
YPYey o5 Yuwp = 0,
P o = 0, APURHBIS g 336y
Y Y = =90,

'VHVP'WW,D = —720, 7ul 23 4

P12 3 PA S _
g " Vi papzpaps = 30240

Yurpopspa = 5040,

Conjugation for the spinors is defined by

(Paxe)” = —¥axp- (A.6)
For spinors (A1, A2, A3) of the same chirality, we have the relations

7“1"'“5)\1(5‘2’}/}11“‘#5)\3) - 07
5\1’7”)\2 = —5\3’}/“)\3{,

MY Ay = NsyHYP L. (A.7)
We extensively use the Fierz identity involving two spinors A; and Ao of the same
chirality
XX = — oy A o gy PNy — gy (A8)
I T 27 MYy 9% 27 Y puvp 3840 27 Vo :

B. Useful properties of modular forms under SL(2,Z)

A modular form ®(™") (1, 7) of weight (m,n) transforms under the SL(2, Z) transformation

ar+b

T ard (B1)
according to the rule
o) (7,7) = (e + d)™(cF + d)" @™ (1, 7). (B.2)
We define modular covariant derivatives as
. 0 m
-Dm = Z(TQE — Zg),
_ . 0 n
Dn = —Z<T2$ +Z§>, (B3)
which take
qu)(m,n) _ (I)(m+1,n—1)7 an)(m,n) _ (I)(m—l,n—l—l). (B4)
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The modular invariant non-holomorphic Eisenstein series of order s for SL(2,Z) is

defined by [&J]

Bnr = Y —=Z

2s
(p,q)#(0,0) Ip+ ]

= 2((2s)15 + 2\/77721_87“8 —1/2) C(2s—1)
I'(s)
47s .\ /T .
T S o2k, 5) Ky (2 )2
['(s)
k0
where !
p(k,s) = Z oo P
m>0,ml|k

We also use the representation

Bfr7)=20(2s) Y. Im(y-7)"

~€T 0 \SL(2,Z)

and the Rankin-Selberg formula [[J]

2 0 g 1/2
TS ) = /0 P [ ans),

-
72 er.\sLez)

where F is the fundamental domain of SL(2,Z).
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